Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
1.
Elife ; 122024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639990

RESUMO

CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Placenta , Gravidez , Animais , Feminino , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Placenta/metabolismo , Transdução de Sinais/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Fosforilação , Antígenos CD4 , Mamíferos/metabolismo
2.
Scand J Immunol ; 99(5): e13358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605535

RESUMO

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Domínios de Homologia de src , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Células Jurkat , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina/metabolismo , Ligação Proteica , Quinases da Família src/metabolismo
3.
Bioorg Med Chem Lett ; 102: 129645, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316368

RESUMO

Lymphocyte-specific protein tyrosine kinase (Lck) plays vital roles in the T-cell receptor- mediated development, function, and differentiation of T-cells. Given its substantial involvement in T cell signaling, irregularities in the expression and functionality of Lck may lead to various diseases, including cancer. In this study, we found that compound 12a exerted significant inhibitory potency against Lck with an IC50 value of 10.6 nM. In addition, 12a demonstrated high efficacy in various colon cancer cell lines as indicated by GI50 values ranging from 0.24 to 1.26 µM. Notably, 12a inhibited the phosphorylation of Lck in Colo201 cells. Overall, the anti-proliferative effects of 12a on diverse cancer cell lines highlights its potential application for the treatment of various cancer types.


Assuntos
Antineoplásicos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/farmacologia , Linfócitos T , Transdução de Sinais , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Antineoplásicos/farmacologia
4.
Bioorg Chem ; 144: 107180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335758

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Benzotiazóis/farmacologia
5.
Nat Commun ; 15(1): 532, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225265

RESUMO

DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.


Assuntos
Fosfatases de Especificidade Dupla , Ubiquitina-Proteína Ligases , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
6.
Structure ; 32(3): 292-303.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38157858

RESUMO

The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T , Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Fosforilação , Zinco/metabolismo , Receptores de Antígenos de Linfócitos T
7.
J Clin Immunol ; 44(1): 4, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112969

RESUMO

Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Humanos , Códon sem Sentido , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Doenças da Imunodeficiência Primária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
8.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833951

RESUMO

The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαß-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction.


Assuntos
Receptores de Antígenos de Linfócitos T , Quinases da Família src , Animais , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos Transgênicos , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/metabolismo
9.
Allergy ; 78(10): 2596-2605, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395496

RESUMO

Eosinophilia is a common finding in drug hypersensitivity reactions (DHR). Its cause is unclear, as neither antigen/allergen-driven inflammation nor clonal expansion is involved. Most delayed-DHRs are due to p-i (pharmacologic interaction of drugs with immune receptors). These are off-target activities of drugs with immune receptors that result in various types of T-cell stimulation, some of which involve excessive IL-5 production. Functional and phenotypic studies of T-cell clones and their TCR-transfected hybridoma cell lines revealed that some p-i-induced drug stimulations occur without CD4/ CD8 co-receptor engagement. The CD4/CD8 co-receptors link Lck (lymphocyte-specific protein tyrosine kinase) and LAT (linker for activation of T cells) to the TCR. Alteration of Lck or LAT can result in a TCR signalosome with enhanced IL-5 production. Thus, if a more affine TCR-[drug/peptide/HLA] interaction allows bypassing the CD4 co-receptor, a modified Lck/LAT activation may lead to a TCR signalosome with elevated IL-5 production. This "IL-5-TCR-signalosome" hypothesis could also explain eosinophilia in superantigen or allo-stimulation (graft-versus-host disease), in which evasion of CD4/CD8 co-receptors has also been described. It may open new therapeutic possibilities in certain eosinophilic diseases by directly targeting the IL-5-TCR signalosome.


Assuntos
Hipersensibilidade a Drogas , Eosinofilia , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Interleucina-5 , Linfócitos T , Antígenos CD8/metabolismo , Antígenos CD4/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo
10.
Cell Rep Med ; 4(2): 100917, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36696897

RESUMO

Signal transduction induced by chimeric antigen receptors (CARs) is generally believed to rely on the activity of the SRC family kinase (SFK) LCK, as is the case with T cell receptor (TCR) signaling. Here, we show that CAR signaling occurs in the absence of LCK. This LCK-independent signaling requires the related SFK FYN and a CD28 intracellular domain within the CAR. LCK-deficient CAR-T cells are strongly signaled through CAR and have better in vivo efficacy with reduced exhaustion phenotype and enhanced induction of memory and proliferation. These distinctions can be attributed to the fact that FYN signaling tends to promote proliferation and survival, whereas LCK signaling promotes strong signaling that tends to lead to exhaustion. This non-canonical signaling of CAR-T cells provides insight into the initiation of both TCR and CAR signaling and has important clinical implications for improvement of CAR function.


Assuntos
Receptores de Antígenos Quiméricos , Proteínas Proto-Oncogênicas/metabolismo , Antígenos CD28 , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfócitos T , Receptores de Antígenos de Linfócitos T , Proteínas Proto-Oncogênicas c-fyn , Transdução de Sinais
12.
Nat Immunol ; 24(1): 174-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564464

RESUMO

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Citotóxicos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD8/metabolismo
13.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490346

RESUMO

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linhagem Celular Tumoral , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/uso terapêutico , Peptidase 7 Específica de Ubiquitina/metabolismo
14.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430477

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK) is common in a variety of hematologic malignancies but comparatively less common in solid tumors. This study aimed to explore the potential diagnostic and prognostic value of LCK across tumors through integrative and comprehensive pan-cancer analysis, as well as experimental validation. Multiple databases were used to explore the expression, alteration, prognostic value, association with immune infiltration, and potential functional pathways of LCK in pan-cancers. The results were further validated by western blotting and qPCR of patient samples as well as tumor cell lines. High LCK expression typically represents a better prognosis. Notably, drug sensitivity prediction of LCK identified P-529 as a candidate for drug development. Gene Annotations (GO) and KEGG analyses showed significant enrichment of PD-L1 and the T-cell receptor pathway. The results from patient samples and tumor cell lines confirmed these conclusions in LIHC. In conclusion, LCK is differentially expressed in multiple tumors and normal tissues. Further analysis highlighted its association with prognostic implications, pan-cancer genetic alterations, and immune signatures. Our data provide evidence for a diagnostic marker of LCK and the possible use of LCK as a target for the treatment of tumors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Neoplasias , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linhagem Celular Tumoral , Linfócitos/metabolismo , Neoplasias/genética
15.
J Biol Chem ; 298(12): 102663, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372231

RESUMO

Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Processamento de Proteína Pós-Traducional , Antígenos Comuns de Leucócito/metabolismo , Bicamadas Lipídicas/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Domínios Proteicos
16.
PLoS One ; 17(10): e0275987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301948

RESUMO

BACKGROUND: Lymphocyte-specific protein tyrosine kinase (Lck) is a member of the Src family of tyrosine kinases. The significance of Lck inhibition in lung fibrosis has not yet been fully elucidated, even though lung fibrosis is commonly preceded by inflammation caused by infiltration of T-cells expressing Lck. In this study, we examined the effect of Lck inhibition in an experimental mouse model of lung fibrosis. We also evaluated the effect of Lck inhibition on the expression of TGF-ß1, an inhibitory cytokine regulating the immune function, in regulatory T-cells (Tregs). METHODS: Lung fibrosis was induced in mice by intratracheal administration of bleomycin. A-770041, a Lck-specific inhibitor, was administrated daily by gavage. Tregs were isolated from the lung using a CD4+CD25+ Regulatory T-cell Isolation Kit. The expression of Tgfb on Tregs was examined by flow cytometry and quantitative polymerase chain reaction. The concentration of TGF-ß in bronchoalveolar lavage fluid (BALF) and cell culture supernatant from Tregs was quantified by an enzyme-linked immunosorbent assay. RESULTS: A-770041 inhibited the phosphorylation of Lck in murine lymphocytes to the same degree as nintedanib. A-770041 attenuated lung fibrosis in bleomycin-treated mice and reduced the concentration of TGF-ß in BALF. A flow-cytometry analysis showed that A-770041 reduced the number of Tregs producing TGF-ß1 in the lung. In isolated Tregs, Lck inhibition by A-770041 decreased the Tgfb mRNA level as well as the concentration of TGF-ß in the supernatant. CONCLUSIONS: These results suggest that Lck inhibition attenuated lung fibrosis by suppressing TGF-ß production in Tregs and support the role of Tregs in the pathogenesis of lung fibrosis.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1/metabolismo , Bleomicina , Fator de Crescimento Transformador beta/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos Endogâmicos C57BL
17.
Adv Sci (Weinh) ; 9(32): e2204522, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161785

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) is the primary regulator of necroptotic cell death. RIPK3 expression is often silenced in various cancer cells, which suggests that it may have tumor suppressor properties. However, the exact mechanism by which RIPK3 negatively regulates cancer development and progression remains unclear. This report indicates that RIPK3 acts as a potent regulator of the homeostatic proliferation of CD4+ CD8+ double-positive (DP) thymocytes. Abnormal proliferation of RIPK3-deficient DP thymocytes occurs independently of the well-known role for RIPK3 in necroptosis (upstream of MLKL activation), and is associated with an incidental thymic mass, likely thymic hyperplasia. In addition, Ripk3-null mice develop increased thymic tumor formation accompanied by reduced host survival in the context of an N-ethyl-N-nitrosourea (ENU)-induced tumor model. Moreover, RIPK3 deficiency in p53-null mice promotes thymic lymphoma development via upregulated extracellular signal-regulated kinase (ERK) signaling, which correlates with markedly reduced survival rates. Mechanistically, lymphocyte-specific protein tyrosine kinase (LCK) activates RIPK3, which in turn leads to increases in the phosphatase activity of protein phosphatase 2 (PP2A), thereby suppressing hyper-activation of ERK in DP thymocytes. Overall, these findings suggest that a RIPK3-PP2A-ERK signaling axis regulates DP thymocyte homeostasis and may provide a potential therapeutic target to improve thymic lymphoma therapies.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfoma , Proteína Serina-Treonina Quinases de Interação com Receptores , Neoplasias do Timo , Animais , Camundongos , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfoma/metabolismo , Camundongos Knockout , Proteína Fosfatase 2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Timócitos/metabolismo , Neoplasias do Timo/metabolismo
18.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078131

RESUMO

Alterations in both the expression and function of the non-receptor tyrosine kinase Zap70 are associated with numerous human diseases including immunodeficiency, autoimmunity, and leukemia. Zap70 propagates the TCR signal by phosphorylating two important adaptor molecules, LAT and SLP76, which orchestrate the assembly of the signaling complex, leading to the activation of PLCγ1 and further downstream pathways. These events are crucial to drive T-cell development and T-cell activation. Recently, it has been proposed that C564, located in the kinase domain of Zap70, is palmitoylated. A non-palmitoylable C564R Zap70 mutant, which has been reported in a patient suffering from immunodeficiency, is incapable of propagating TCR signaling and activating T cells. The lack of palmitoylation was suggested as the cause of this human disease. Here, we confirm that Zap70C564R is signaling defective, but surprisingly, the defective Zap70 function does not appear to be due to a loss in palmitoylation. We engineered a C564A mutant of Zap70 which, similarly to Zap70C564R, is non-palmitoylatable. However, this mutant was capable of propagating TCR signaling. Moreover, Zap70C564A enhanced the activity of Lck and increased its proximity to the TCR. Accordingly, Zap70-deficient P116 T cells expressing Zap70C564A displayed the hyperphosphorylation of TCR-ζ and Zap70 (Y319), two well-known Lck substrates. Collectively, these data indicate that C564 is important for the regulation of Lck activity and proximal TCR signaling, but not for the palmitoylation of Zap70.


Assuntos
Cisteína , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Proteína-Tirosina Quinase ZAP-70 , Cisteína/metabolismo , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
19.
Sci Transl Med ; 14(659): eabo5228, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001679

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, and there is an unmet need for targeted therapies, especially for patients with relapsed disease. We have recently identified pre-T cell receptor and lymphocyte-specific protein tyrosine kinase (LCK) signaling as a common therapeutic vulnerability in T-ALL. LCK inhibitor dasatinib showed efficacy against T-ALL in preclinical studies and in patients with T-ALL; however, this is transient in most cases. Leveraging the proteolysis targeting chimera (PROTAC) approach, we developed a series of LCK degraders using dasatinib as an LCK ligand and phenyl-glutarimide as a cereblon-directing moiety. Our lead compound SJ11646 exhibited marked efficiency in cereblon-mediated LCK degradation in T-ALL cells. Relative to dasatinib, SJ11646 showed up to three orders of magnitude higher cytotoxicity in LCK-activated T-ALL cell lines and primary leukemia samples in vitro, with drastically prolonged suppression of LCK signaling. In vivo pharmacokinetic and pharmacodynamic profiling indicated a 630% increase in the duration of LCK suppression by SJ11646 over dasatinib in patient-derived xenograft models of T-ALL, which translated into its extended leukemia-free survival over dasatinib in vivo. Last, SJ11646 retained a high binding affinity to 51 human kinases, particularly ABL1, KIT, and DDR1, all of which are known drug targets in other cancers. Together, our dasatinib-based phenyl-glutarimide PROTACs are promising therapeutic agents in T-ALL and valuable tools for developing degradation-based therapeutics for other cancers.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteólise , Linfócitos T/metabolismo
20.
Front Immunol ; 13: 935367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860252

RESUMO

Lck and Zap70, two non-receptor tyrosine kinases, play a crucial role in the regulation of membrane proximal TCR signaling critical for thymic selection, CD4/CD8 lineage choice and mature T cell function. Signal initiation upon TCR/CD3 and peptide/MHC interaction induces Lck-mediated phosphorylation of CD3 ITAMs. This is necessary for Zap70 recruitment and its phosphorylation by Lck leading to full Zap70 activation. In its native state Zap70 maintains a closed conformation creating an auto-inhibitory loop, which is relieved by Lck-mediated phosphorylation of Y315/Y319. Zap70 is differentially expressed in thymic subsets and mature T cells with CD8 T cells expressing the highest amount compared to CD4 T cells. However, the mechanistic basis of differential Zap70 expression in thymic subsets and mature T cells is not well understood. Here, we show that Zap70 is degraded relatively faster in DP and mature CD4 T cells compared to CD8 T cells, and inversely correlated with relative level of activated Zap70. Importantly, we found that Zap70 expression is negatively regulated by Lck activity: augmented Lck activity resulting in severe diminution in total Zap70. Moreover, Lck-mediated phosphorylation of Y315/Y319 was essential for Zap70 degradation. Together, these data shed light on the underlying mechanism of Lck-mediated differential modulation of Zap70 expression in thymic subsets and mature T cells.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...